Spherical Skinning with
Dual-Quaternions and QTangents

lvo Zoltan Frey
Crytek R&D

~

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

Goals

#1 Improve performance by reducing the shader
constant requirements for joint transformations
30% shader constants reduction

#2 Reduce the memory foot-print of
skinned geometry

22% vertex memory reduction
29% for static geometry

y @SIGGRAPHQOH

VAN(oUVER

Skinned Geometry

ez)\
,"’3 ‘.\.\‘_:t“ s)\\ . }/a\
s = # A\
L LY R)
1 S
//// | f RN

CR‘,}EK @ SIGGRAPH2011

VAN(ouVER

Goal #1

= |mprove performance by reducing the shader
constant requirements for joint transformations

= Skinned geometry requires multiple passes
= Motion Blur requires twice the transformations

= The amount of required shader constants
affects the performance of a single pass

Cl:{; @ SIGGRAPH2011

VAN(ouVER

Skinning with Quaternions

= ~30% less shader constants consumption
compared to 4x3 packed matrices

= Quaternion Linear Skinning
= Accumulated transformations don’t work for positions

= Explosion of vertex instructions

= Quaternion Spherical Skinning [HEIJLO4]

= Extra vertex attribute required

= Doesn’t handle well more than 2 influences per vertex

= Dual-Quaternion Skinning [KCO06] [KCZOO08]

= |ncrease in vertex instructions

o~

C-:’\(V)FK' @ SIGGRAPH2011

VAN(oUVER

Dual-Quaternion Skinning [KSOO06] [KCZO08]

= Compared to Linear Skinning with matrices
= Accumulation of transformations is faster
= Applying the transformation is slower
= \With enough influences per vertex it becomes overall faster

= The reduction of shader constants was a
win over the extra vertex instructions cost

A

y @ SIGGRAPH2011

VAN(oUVER

From Linear to Spherical

= Geometry needs to be rigged differently

= And you will still need your helper joints

= Riggers and Animators need to get used to it

= Some will love it, others will hate it
Most will keep changing their mind

= You might have to write skinning plug-ins
for third party authoring software

= Some recent authoring packages have adopted

Dual-Quaternion Skinning out of the box !» ; & ;
Q. f SIGGRAPH2011
o &40 — '@
CRYT=K &/ VAN(oUVER

Goal #2

= Reduce the memory foot-print of
skinned geometry

= \We are now developing on consoles, every byte counts!

= More compact vertex format will also lead to
better performance

= Do not sacrifice quality in the process!
y @SIGGRAPH2011

VAN(oUVER

Tangent Frames

Tangent Frames were the biggest vertex attribute
after our trivial memory optimizations

In further optimizing them we need to ensure that
= They keep begin efficiently transformed by Dual-Quaternions
= All our Normal Maps keep working as they are

C")'/ @ SIGGRAPH2011

VAN(oUVER

About Tangent Frames

* Please make them orthogonal!

= |f they are not, you are introducing skewing
" You can’t use a transpose to invert the frame matrix
= You need a full matrix inversion

= This will also prevent you from using some
compression techniques!

CR; @ SIGGRAPH2011

VAN(oUVER

Compressed Matrix Format

Vertex attributes contain two of the
frame’s vectors and a reflection scalar

Tangent BiTangent Reflection

X y z X y z s

The third frame’s vector is rebuild from a cross
product of the given vectors and a multiplication
with the reflection scalar

normal = cross(tangent, biTangent) * s

\(<
7<
'\

SIGGRAPH2011
VAN(oUVER

Tangent Frames With Quaternions

Quaternion to Matrix conversion

t = transform(gq, vec3(1, 0, 0))
transform(q, vec3(0, 1, 0))
= transform(gq, vec3(0, 0, 1))

ol o
(|

Quaternions don’t natively contain
reflection information

o

SIGGRAPH2011
VAN(ouVER

Bringing Reflection Into the Equation

Similarly to the compressed matrix
format, we can introduce reflection
with a scalar value

t = transform(gq, vec3(1, 0, 0))
transform(gq, vec3(0, 1, 0))
n = transform(q, vec3(0, 0, 1)) * s

o
i

SIGGRAPH2011
VAN(ouVER

CYTEK &)

Tangent Frame Format Memory Comparison

Compressed Matrix

Tangent BiTangent Reflection
X y z X y z s
Quaternion
Quaternion Reflection
X y z w S

CR; @ SIGGRAPH2011

VAN(ouVER

Our Quaternion Properties

They are normalized
length(q) ==

And they are sign invariant

q == -q
C:’:S"LEK @SIGGRAPHQOH

VAN(oUVER

Quaternion Compression

We can compress a Quaternion down to three elements by
making sure one of the them is greater than or equal to zero

if (g.w < 0)
qd-F8=9

We can then rebuild the missing element with

q.w = sqrt(l - dot(qg.xyz q.xyz))

CRB:’)T:K @ SIGGRAPH2011

VAN(oUVER

Tangent Frame Format Memory Comparison

Compressed Matrix

Tangent BiTangent Reflection
X y z X y z s
Quaternion
Quaternion Reflection

X

Y

z

W

S

Compressed Quaternion

Quaternion

Reflection

X

Y

z

S

7

CR; K @ SIGGRAPH2011

VAN(oUVER

Instruction Cost

Quaternion decompression
5 mov, dp3, add, rsq, rcp

Quaternion to Tangent and BiTangent

6 add, mul, mad, mad, mad, mad

Normal and Reflection computation

3 mul, mad, mul

Total
11 for Tangent, BiTangent and Reflection
14 for full Tangent Frame

o~

Cr_-’\(>7)1=|(@ SIGGRAPH2011

VAN(oUVER

Avoiding Quaternion Compression

Isn't there a way to encode the reflection scalar
in the Quaternion, instead of compressing it?

Remember, Quaternions are sign invariant

9 S5l

We can arbitrarily decide whether one of its
elements has to be negative or positive!

~

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

Encoding Reflection

First we initialize the Quaternion
by making sure q.w is always positive
if (g.w < 0)
Jame—9

If then we require reflection, we make q.w negative
by negating the entire Quaternion

if (reflection < 0)
qa= -9

~

C:,\‘sr}-':K @ SIGGRAPH2011

VAN(oUVER

Decoding Reflection

All we have to do in order to decode our reflection scalar
IS to check for the sign of g.w

reflection = q.w < 0 ? -1 : +1

As for the Quaternion itself, we can use it as it is!

9= 9

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

Instruction Cost

Reflection decoding
2 slt, mad

Quaternion to Tangent and BiTangent

6 add, mul, mad, mad, mad, mad

Normal and Reflection computation

3 mul, mad, mul

Total
8 for Tangent, BiTangent and Reflection
11 for full Tangent Frame

C-:’\(V)FK' @ SIGGRAPH2011

VAN(oUVER

Tangent Frame Transformation with Dual-Quaternion

Quaternion-Vector transformation

float3x3 frame;
frame[0] = transform quat vec(
skinningQuat, vertex.tangent.xyz);

frame[l] = transform quat vec(

skinningQuat, vertex.biTangent.xyz) ;

frame[2] = cross(frame[0], frame[l]);
frame[2] *= vertex.tangent.w;

15 instructions

Quaternion-Quaternion transformation

float4 q = transform quat quat(
skinningQuat, vertex.qTangent)

float3x3 frame = quat_to _mat(q);

frame[2] *= vertex.qTangent.w < 0 ? -1

16 instructions

~

oy

XY

1=

7

: +1;

SIGGRAPH2011
VAN(oUVER

QTangent Definition

A Quaternion of which the sign of
the scalar element encodes the Reflection

~

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

Stress-Testing QTangents

By making sure we throw at it
our most complex geometry!

~

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

Singularity Found!‘ Y

wespons Adist

o A
FFFOOuvovuL

vuL v (P AVIV N VNP
vvwoovouuvwoyv

..' » ‘
Singularity Found!‘ .

4

¢ I

At times the most complex cases pass,

while the simplest fail!
« F

-

Singularity

Our singularities manifest themselves when the
Quaternion’s scalar element is equal to zero

Matrix
-1 7 0] p 0] Quaternion
0, =1t/ el 0,0, 15 0
0, 0,

This means the Tangent Frame’s surface is
perpendicular to one of the identity’s axis

C?\; K @ SIGGRAPH2011

VAN(oUVER

Floating-Point Standards

= So what happens when the
Quaternion’s scalar element is 0?

= The IEEE Standard for Floating-Point Arithmetic does
differentiate between -0 and +0, so we should be fine!

= However GPUs don'’t exactly always comply to this
standard, at times for good reasons

y @SIGGRAPH2OH

VAN(oUVER

GPUs Floating-Point “Standards”

= GPUs allow vertex attributes to be specified as
iIntegers representing normalized unit scalars

= They are then resolved into Floating-Point values

= |ntegers don’t differentiate between -0 and +0,
thus this information is lost in the process

A

y @SIGGRAPHZOH

VAN(oUVER

Handling Singularities

= |n order to use integers to encode reflection,
we need to ensure that g.w is never zero

= When we find g.w to be zero,
we need to apply a bias

~

C:,\‘sr}-':K @ SIGGRAPH2011

VAN(oUVER

Defining Our Bias Constant

We define our bias constant as the
smallest value that will satisfy q.w !'= 0

If we are using an integer format, this value is given by

bias® =l #(2BITs 1+ "1

~

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

Applying the Bias Constant

We need to apply our bias for each Quaternion satisfying g.w < bias,
and while doing so we make sure our Quaternion stays normalized

if (g.w < bias)

{
g.xyz *= sqrt(l - bias*bias)
g.w = bias

~

C-:’\(S")T:K @ SIGGRAPH2011

VAN(oUVER

QTangents with Skinned Geometry

Position 4 floatl6 | 8 bytes
TexCoord 2 floatl6 | 4 bytes
Tangent 4intl6 | 8bytes
BiTangent 4intl6 | 8bytes
SkinIndices 4uint8 | 4 bytes
SkinWeights 4uint8 | 4 bytes

= From 36 bytes to 28 bytes per vertex

= ~22% memory saved 789%

(o]
= No overhead with Dual-Quaternion Skinning
= ~8instruction overhead with Linear Skinning

~

C_,‘S}EK- @ SIGGRAPH2011

™ VAN(oUVER

QTangents with Static Geometry

Position 4 floatl6 | 8 bytes
TexCoord 2 floatl6 | 4 bytes
Tangent 4intl6 | 8bytes
BiTangent 4intl6 | 8bytes

= From 28 bytes to 20 bytes per vertex
= ~29% memory saved
= ~8instruction overhead

~

C:’:)JFK' @ SIGGRAPH2011

VAN(oUVER

Future Developments

= Quaternions across polygons

" |nterpolating Quaternions across polygons and
making use of them at the pixel level

= Quaternions in G-Buffers
= Encoding the whole Tangent Frame instead of just Normals
= Can open doors to more Deferred techniques
= Anisotropic Shading
= Directional blur along Tangents

o~

C?\(VY)EK @ SIGGRAPH2011

VAN(ouVER

Special Thanks

= |vo Herzeg, Michael Kopietz, Sven Van Soom,
Tiago Sousa, Ury Zhilinsky

= Chris Kay, Andreas Kessissoglou, Mathias Lindner,
Helder Pinto, Peter S6derbaum

= Crytek

~

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

References

[HEIJLO4] Heijl, J.,
"Hardware Skinning with Quaternions”,
Game Programming Gems 4, 2004

[KCOO06] Kavan, V., Collins, S., O'Sullivan, C.,
"Dual Quaternions for Rigid Transformation Blending",
Technical report TCD-CS-2006-46, 2006

[KCZO08] Kavan, V., Collins, S., Zara, J., O'Sullivan, C.,
"Geometric Skinning with Approximate Dual Quaternion Blending",
ACM Trans. Graph, 2008

C_,‘S;’EK- @ SIGGRAPH2011

N VAN(oUVER

Questions?

Ivof@crytek.com

C_,y @SIGGRAPHZOH

VAN(oUVER

